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I. INTRODUCTION

This paper, which continues the authors' work on the dual versions of
fundamental approximation theorems 18 J, but can be read independently,
deals with the saturation behaviour of a family of dual operators
1T;; t E (0, II}, where 1T( f is a commutative, strong approximation process
on a Banach space X satisfying a so called Voronovskaja-type relation (see
(1.4) below).

Since there exist several definitions of the saturation property differing
somewhat from each other (e.g. [I, p. 25; 2, p. 87; 4, p. 434; 5, p. 491, let us
just recall that one which seems to be the most appropriate for our setting.

DEFINITION I. Let 11',; t E (0, I] f be a family of bounded linear
operators mapping a Banach space X into itself. 1T(} is said to possess the
saturation property, if there exists a positive function ep, defined on (0. I [
with limHl , ep(t) = 0, such that: (i) for every IE X satisfying

lim infil(ep(t» - I ITJ - I lil.\ = °
t-+Oi-

(1.1 )

there holds TJ = I for small t, i.e., I is an invariant element of T p and (ii)
the set

FIX; T, I := ]IE X; II TJ - Illx = ("l(ep(t», t --> O+}

contains at least one non-invariant element Io.
In this event, the family 1T, f is said to be saturated in X with order

("'(ep(t», and FIX; T( I is called its Favard or saturation class.

It is also possible to consider sequences of operators \T k ; k E: N f

(N = naturals). One need just replace t E (0, II by kEN, t --> 0+ by k --> 00.
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and rp(t) by rp(l/k) whenever they occur. Then all results given below will
remain valid for this case.

One of the main results concerning saturation, due to H. Berens [1,
Satz 3.2], is given in

THEOREM 1. Let {Tt ; t E (0, I]} be a commutative, strong approx
imation process on a Banach space X, i.e.,

TtTJ= TsTJ (lEX;s,tE (0,1]),

lim II TJ - fllx = 0 (IE X),
t~O+

(1.2)

(1.3 )

and B a closed linear operator with domain D(B) c X and range R(B) eX,
satisfying the Voronovskaja-type relation

(g E D(B», (1.4)

rp given as in Definition 1. Suppose that there exists a regularization process
{fn; n E IN}, i.e., a sequence of bounded linear operators from X into itself
such that fiX) c D(B) for each n E IN, and

lim IIJnf - fllx = 0
n~oo

(lEX), (1.5)

(IE X; n E IN; t E (0, I]). (1.6)

(a) IffEX is such that (1.1) holds, thenfE D(B) and Bf=O.

(b) The following statements are equivalent for f EX;

(i) II TJ - fllx = &(rp(t» (t ---+ 0+),

(ii) fE i5{Ji)X, i.e., f belongs to the completion of D(B) relative
to X.

For the definition of the relative completion recall [I, p. 14; 4, p. 373]. In
(ii) as well as in the following D(B) is endowed with the norm

II glID(Bl ;= II gllx + IIBgllx (g E D(B». (1. 7)

Note that Theorem I does not state that {T( } is saturated, since the
conclusion of part (a), namely, Bf= 0, does not necessarily imply TJ=ffor
small t. In many applications, however, this will be the case, so that this
result is a useful tool for proving saturation theorems for particular approx
imation processes.

The aim of this paper now is to prove two counterparts of Theorem I for
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the family 1T; l of dual operators. Our results generalize in particular those
of de Leeuw 171 and Butzer-Berens 12, Corollary 2.1.51 concerning
saturation of dual semigroups of operators.

2. PRELIMINARIES

Concerning notations, if X. Yare normed linear spaces, then [X. Y [ is the
space of all bounded linear operators from X into Y, endowed with the
operator norm ·!IIX.}I' Instead of [X.X[ we write [XI.

If X'. Y' are the dual spaces of X and Y. respectively, and TE IX. Y[.
then the dual operator T'. defined by

(T'f'J) = (f'. Tf)

is an element of [Y'. X' [ and

(I' E Y'JE X). (2.1 )

I T' I II .XI = T!!I\.}I· (2.2)

Moreover, if Y is a Banach space and the range of T equals Y. in notation
R(T) = Y, then T' has a continuous inverse. i.e., (T') I E [X'. Y'[ (see [9.
Section 4.5 and Theorem 4.7B j).

Now let B be a linear operator (not necessarily bounded) with domain
D(B) dense in X into X. The operator B*, also called the dual of B. is a
mapping whose domain D(B *) consists of all f' E X' for which there exists
a g' E X' such that

(g',g)=(f',Bg) (gED(B)); (2.3 )

in this case one sets B*f' =g'. It is clear that D(B*) is a linear manifold in
X', and that B* is a linear operator from D(B*) into X'.

On the other hand, since B becomes a bounded operator when regarded as
a mapping from D(B) (endowed with the norm (1.7)) into X. one can also
consider the operator B' E [X', D(B)'I. It follows that B* is the restriction
of B' to those f' E X' for which B'f' has a continuous extension from D(B)
to X, in other wordsJ' belongs to D(B*) if and only if B'f' E X'. Note that
the extension of B'f' from D(B) to X is unique since D(B) is dense in X (cf.
16, p. 50 j).

The following lemmas will be needed below:

LEMMA 1. Under the assumptions of Theorem I there holds:

(i) D(B) is dense in X;

(ii) TtEID(B)j(tE(O.II);

(iii) TtBg = BTl g (g E D(B); t E (0, II).
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Proof Assertion (i) follows immediately from (1.5) since JnfE D(B).
To prove (ii) and (iii) note that g belongs to D(B) and Bg =f if and only if
s-limt~o+(qJ(t»-1 [Tt g - g] = f (cf. [4, p. 502]). Now, if g E D(B), then

. Ts Tt g - Tt g [. Ts g - g 1
s-hm ( ) = T( s-hm ( ) = TtBg,
s~o+ qJ s s~O+ qJ S

implying T, g E D(B) and BT/ g = T/Bg, which is (iii). Furthermore, part (ii)
follows in view of

LEMMA 2. Let {Tt ; t E (0, 1J} and B be given as in Theorem 1. Then
there exist M, 15 >a such that

II(qJ(t» -I [Tt -1]II[D(B).xl <. M

II(qJ(t»-I[T; -1]II[x',D(B)'J <.M
(0 < t <. 15),

(0 < t <. 15),

(2.4 )

(2.5 )

where I denotes the identity operator on any space.

The proof of (2.4) follows by the uniform boundedness principle in view of
(1.4), noting that D(B) is a Banach space under the norm (1. 7); inequality
(2.5) can be deduced from (2.4) by (2.2).

3. Two GENERAL DUAL SATURATION THEOREMS

The aim of this section is to prove two counterparts of Theorem 1 for the
family {T;; t E (0, 1J} of dual operators, where {Tt } is given as in
Theorem 1. It follows obviously from the definition and (1.3) that 1T;} is a
family of bounded linear operators from X' into itself, satisfying

lim <TU',j) = <I',j)
t~o+

(1' EX';jEX),

i.e., T; tends in the w*-topology of X' towards the identity.
Similarly, since B is a bounded linear operator from D(B) normed by

(1.7) into X, it follows that B' E [X',D(B)'], and in view of (1.4) there
holds the Voronovskaja-type relation

lim «qJ(t»-I[T;j' -j'],g)= <B'f',g)
/·.... 0+

(1' EX'; g E D(B». (3.2)

THEOREM 2. Let {Tt ; t E (0, 1j}, Band {In ; n E IN l be given as in
Theorem 1. Suppose, in addition, that there exists a complex number A such
that R(B - A1) = X.
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(a) If f' E X' is such that lim inft~o+ 1f(<p(t))-'IT;f' - f' Jllx = 0,
then l' E D(B*) and B*1' = 0 on X

(b) The following statements are equivalent for l' E X':

(i) II T;1' - f' IIX' = &(<p(t)) (t --> 0+),

(ii) f' E D(B*).

Proof Concerning part (a), there exists a sequence Uj;j E !\j l c (0, I j
with limj~oo I j = 0 such that

lim 11(<p(t;)) 'IT;I'-1'lllx=O.
J--+CX) J

This yields for all g E D(B)

0= lim «(<p(t i )) -'I T;r -1'1, g)
J --+et)' I

giving l' E D(B*) and B*1' = 0 by (2.3).
As to part (b), setting B ( := (<p(t)) 'I T{ - I]' one has by (i) that the

family 1BU' l c X', regarded as a family of operators from X into the space
of complex numbers, is uniformly bounded for 0 < I";; 6, and strongly
convergent for 1-->0+ on a dense subset of X by (3,2), An application of the
Banach-Steinhaus theorem (cf. 14, Proposition 0.7,31) then yields the
existence of a g' E X' such that

lim (BU',j) = (g',j)
(~o+

Comparing this with (3.2) reveals that

(g', g) = (B1 ' , g) = (f', Bg)

(j'EX).

(g E D(B)),

and so it follows that f' E D(B *).
Conversely, since R(B - AI) = X implies that B ' - Ai has a continuous

inverse from D(B)' into X', one obtains

IIBU' -B*1'IIX'=I(B' -)..1)-I(B ' -)..1)(B; -B*)1'I\

,,;; M II(B ' - )..1)(B; - B*)f' II/JII/I

=MII(B ' -)..1)(B; -B')1'II/JIH)'

noting that B 'f' = B *1' on D(B). Now one easily verifies by Lemma I(iii)
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that (B' - AI) commutes with (B; - B'), and so In view of (2.5) there
follows the estimate

II B;J' - B*I' Ilx'::;; M liB; - B'II[x',D(R)'J II(B' - AI)I' Ilx' = ~(1) (t --> 0+).

This gives assertion (i), and the proof is complete, I

It should be mentioned that the existence of the regularization process
{in}, which is not explicitely used in the proof of Theorem 2, is needed for
the proof of Lemma I(iii) which in turn was used to show that (B' - AI)
commutes with (B; - B '). If T , maps X into D(B), which is the case in many
applications, then one may take I n = T 1/ n •

Now we come to the second counterpart of Theorem 1. Since T, belongs
also to [D(B)], one can in addition treat saturation of {T;} in [D(B),J, In
this case one has to assume that the I n map X continuously into D(B).

LEMMA 3. Let jT/}, Band jJn} be given as in Theorem I, and assume
that I n E [X, D(B) J for each n E IN. Then

(i) JnBg = BJng (g E D(B); n E IN);

(ii) lim n _ oo IIJn g - gIID(B) = 0 (g E D(B));

(iii) IIJnll[D(B»::;; M (n E IN);

(iv) J~B'g' =B'J~ g' (g' E D(B)'; n E IN);

(v) limn_oo<J~I', g) = <I', g) (I' E D(B)'; g E D(B»);

(vi) IIJ~II[D(B)'I::;; M (n E IN).

Proof Assertion (i) can be proved similarly as Lemma I(iii) using (1.6);
(ii) then follows by (1.5). Regarding (iii), one has again to apply the
Banach-Steinhaus theorem, noting (ii) and the fact that {In} c [D(B)J.
Statements (iv), (v) and (vi), finally, are the dual versions of (i), (ii) and
(iii). I

Our second result now reads

THEOREM 3. Let the assumptions of Theorem 2 be satisfied and suppose,
in addition, that {In ; n E IN} c [X, D(B)].

(a) Iff'ED(B)' is such that liminfho+ll(tp(t»-IIT:I'-I'JIID(BI'
= 0, then I' has a continuous extension from D(B) to X, belongs to D(B *)
and B*f' = 0 on X.

(b) The following statements are equivalent for f' E D(B)':

(i) II T;I' -I' IID(B)' = r9(tp(t)) (t --> 0+),

(ii) I' has a continuous extension from D(B) to X, i.e., I' E X'.
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Proof We prove only part (b) since (a) follows by the same argument as
in the proof of Theorem 2. Now for l' E D(B)' one has J~1' E X', and

IIJ~1' Ilx' = II(B ' - AI) -I (B ' - A1) J~1' IiX'

~M11IB'J~1'IID(B) + IAIIIJ~1'II[)(B)'}'

Using (1.6) and (i) one can estimate the first term by

II B 'J~1' II[)(B)' ~ lim inf IIJ~ I(cp(t» - 1 [T;J'- l' j Ill lJiB )
t--tO +

~ sup II(cp(t)) II T;1' -1' 1,llJIRI ,IJ;,II[[)(BII
IE 10.8)

so that together

~ M liJ~II[/JIB)'1 (n E 11\),

(n E }J),

the latter inequality being valid by Lemma 3(vi). So the sequence \J~1' I is
uniformly bounded with respect to n E 11\, as well as convergent on a dense
subset of X by Lemma 3(v). So one can conclude that there exists some
n E X' satisfying

lim <J~1'J) = UbJ>
n --t<X.;

(IE X).

Comparing this result with Lemma 3(v) shows that f:) is the desired
extension of 1'. The converse direction, finally. is given by inequality
(2.5). I

The difference between Theorems 2 and 3 is that they treat the saturation
problem in different spaces. In Theorem 2 the operators T; are regarded as
elements of IX' I, whereas in Theorem 3 they are considered as elements of
[D(B)' I. Although the proofs of both theorems are quite similar. it does not
seem that one can be deduced from the other.

4. ApPLICATIONS

4.1. Semigroups of Operators

If jS(t); t -> O~ is a (Co)-semigroup of operators defined on a Banach
space X (for definition see [2, Section 1.11), and A is the infinitesimal
generator, then D(A) is dense in X, and by definition there holds

lim lit l[S(t)g-gl-Agllx=O
!-to-+-

(g E D(A n.
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i.e., {Set); t~ O} satisfies a Voronovskaja-type relation with ({J(t) = t and
B = A. Moreover,

f
l/n

Jnf:= n S(t)fdt
o

(n E IN)

defines a regularization process, as needed in Theorems 1 or 2, and one has
that R(A - AI) = X for all complex A with real part large enough (cf. [2,
pp. 31,32]). Finally, iff' E D(A *), then (cf. [2, p. 48])

(S(t)' I' -I',f) = f (S(u)' A *I',f) du
o

(IE X; t >0).

This shows that A *1' = 0 on X implies Set)' I' =1' for all t > O.
As an application of Theorem 2 one now obtains

THEOREM 4. Let {Set); t ~ O} be a (Co)-semigroup of operators on a
Banach space X with infinitesimal generator A:

(a) IfI' E XI is such that lim inft _ o+ IIr l [S(t)' I' - 1'1I1x' = 0, then
Set)' I' =1' for all t > O.

(b) The following statements are equivalent for f' E x' :
(i) II Set)' I' - f' Ilx- = 6"(t) (t ~ 0+),

(ii) I' E D(A *).

Theorem 4 states that {S(t)'} is saturated in X' with order &(t), the
saturation class being given by D(A *). Note that this result was already
established by de Leeuw [7] using the Banach-Alaoglu theorem on w*
compactness of bounded w*-closed sets; see also [2, Theorem 2.1.4].

In order to apply Theorem 2, we restrict ourselves to holomorphic
semigroups, which means that S(t)fE D(A) for all fE X and t> O. In this
case one can use the results in [8] to obtain in addition assertions on non
optimal approximation.

THEOREM 5. Let {S(t); t ~ O} be a holomorphic (Co)-semigroup of
operators on a Banach space X.

(a) The following assertions are equivalent for I' E D(A)' and
0< a < 1:

(i) II Set)' I' -I' IID(A)' = &(tU
) (t --> 0+),

(ii) K(tu,f';D(A)"X')=&(t U
) (t-->O+).

(b) {S(t)'} is saturated in D(A)I with order &(t), the saturation class
is given by X'.
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For the proof of part (a) and the definition of the K-functional see [8 j.
The Jackson-type inequality needed there follows from (2.4) and the
Bernstein-type inequality from 12, Proposition 1. J.II I. Note that
Theorem 5(b) remains valid if the assumption jS(t)} to be holomorphic is
dropped.

4.2. Convolution Integrals

As a further application of Theorem 3 we consider approximation
processes generated by convolution integrals. Let C2" denote the space of all
continuous, 2n-periodic, complex-valued functions defined on the real axis
endowed with the supremum norm l!flle . A sequence of functions
IXk; k E iN f in C2" is called an approximate identity, if .I·~ j Xk(U) du = 2n for
all k E I'~ and limk~x .l'IUI>O iXk(u)1 du = °for each 0> O. The convolution
integrals offE C2" with Xk are defined as

(k E kxE ).

The Vk are bounded linear operators from C 2" into itself satisfying

lim II VJ - file = °
k---+J

In order to apply Theorem 2 we assume that the Vk satisfy a
Voronovskaja-type relation with respect to the 2nd derivative, namely,

lim II k'" [Vk g - g I- cg(2) lie = 0
k-lX

(4.1 )

for some a> 0, c E IP\IO}, where C~" is the set of all g E Cl" for which the
2nd derivative g(21 again belongs to Cl,,' So we have B = c(djdx)2.
D(B) = C~" and <p(ljk) = k- a

,

As regularization operators J n one can take any convolution integral with
underlying approximate identity 1Kn f C C~J[' Finally, one has that for each
complex A with Ajc *"}" for j = 0, I, 2,... there holds R(c(djdx) 2 - AI) = C 2'f'

In order to compute the dual space of C~" we regard C;" and (C~,,)' as
subspaces of £2;", the space of all 2n-periodic distributions (cf. [10.
Chapter II I). On £2;" we consider the operator

-f

(I 2f')(x):= '\' (iJr- 2 f'-(j) ei)x

j ---,- I.

JTO

(I' E 0 ;,,),

where convergence is to be understood in the topology of 'J';". and the
distributional Fourier coefficients are given by f'-(j) := (2n) l(f'(X), e Ii\\.
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Setting now

(C' )-2 '= {f' E@"I2f'EC'}211" 21r' 27t ,

then (C~,,)' and (C~,,)-2 are equal with equivalent norms (cf. [8]).

359

THEOREM 6. Let {Vk ; k E IN} be a sequence of convolution integrals
satisfying (4.1)for some a >0, c E IR\{O}.

(a) IfI' E (q,,)-2 is such that lim infk-->oo Ilka [Vkf' - I'JII(c;.)-2 = 0,
then Vkf' =1' for all k E IN.

(b) Thefollowing statements are equivalent for I' E (C~,,)-2:

(i) II Vkf' -I' II(c;.)-2 = &(k- a
) (k -t (0),

(ii) I' E q".
There are various convolution integrals satisfying the Voronovskaja-type

relation (4.1), e.g., the integrals of Jackson with a = 2, c = 3/2, of de La
Vallee Poussin with a = 1, c = 1 and those of Rogosinski with a = 2,
c=n 2/8 (cf. [3]).

Similarly as in Theorem 5 one can use the results in [8 J to treat approx
imation orders C9(k-O) for °< (J <a. Results corresponding to those of
Theorem 6 are valid in L~,,-spaces.

Of course it would also be possible to apply Theorem 2 to convolution
integrals. In this case one has to compute the spaces D(B *). For some
particular integrals this is carried out in [7 J.
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