Saturation Theorems for Families of Dual Operators

S. RIES AND R. L. STENS

Lehrstuhl A für Mathematik, Aachen University of Technology, Aachen, Federal Republic of Germany

Communicated by P. L. Butzer

Received August 10, 1983

1. INTRODUCTION

This paper, which continues the authors' work on the dual versions of fundamental approximation theorems [8], but can be read independently, deals with the saturation behaviour of a family of dual operators $\{T'_t; t \in (0, 1]\}$, where $\{T_t\}$ is a commutative, strong approximation process on a Banach space X satisfying a so called Voronovskaja-type relation (see (1.4) below).

Since there exist several definitions of the saturation property differing somewhat from each other (e.g. [1, p. 25; 2, p. 87; 4, p. 434; 5, p. 49], let us just recall that one which seems to be the most appropriate for our setting.

DEFINITION 1. Let $\{T_t; t \in (0, 1]\}$ be a family of bounded linear operators mapping a Banach space X into itself. $\{T_t\}$ is said to possess the saturation property, if there exists a positive function φ , defined on (0, 1] with $\lim_{t\to 0^+} \varphi(t) = 0$, such that: (i) for every $f \in X$ satisfying

$$\liminf_{t \to 0^+} \|(\varphi(t))^{-1} [T_t f - f]\|_{\mathcal{X}} = 0$$
(1.1)

there holds $T_t f = f$ for small t, i.e., f is an invariant element of T_t , and (ii) the set

$$F[X; T_t] := \{ f \in X; \|T_t f - f\|_X = \mathcal{C}(\varphi(t)), t \to 0+ \}$$

contains at least one non-invariant element f_0 .

In this event, the family $\{T_t\}$ is said to be saturated in X with order $\mathcal{O}(\varphi(t))$, and $F[X; T_t]$ is called its Favard or saturation class.

It is also possible to consider sequences of operators $\{T_k; k \in \mathbb{N}\}\$ (\mathbb{N} = naturals). One need just replace $t \in (0, 1]$ by $k \in \mathbb{N}$, $t \to 0+$ by $k \to \infty$. and $\varphi(t)$ by $\varphi(1/k)$ whenever they occur. Then all results given below will remain valid for this case.

One of the main results concerning saturation, due to H. Berens [1, Satz 3.2], is given in

THEOREM 1. Let $\{T_t; t \in (0, 1]\}$ be a commutative, strong approximation process on a Banach space X, i.e.,

$$T_t T_s f = T_s T_t f$$
 $(f \in X; s, t \in (0, 1]),$ (1.2)

$$\lim_{t \to 0+} \|T_t f - f\|_X = 0 \qquad (f \in X), \tag{1.3}$$

and B a closed linear operator with domain $D(B) \subset X$ and range $R(B) \subset X$, satisfying the Voronovskaja-type relation

$$\lim_{t \to 0+} \|(\varphi(t))^{-1}[T_t g - g] - Bg\|_{\chi} = 0 \qquad (g \in D(B)),$$
(1.4)

 φ given as in Definition 1. Suppose that there exists a regularization process $\{J_n : n \in \mathbb{N}\}$, i.e., a sequence of bounded linear operators from X into itself such that $J_n(X) \subset D(B)$ for each $n \in \mathbb{N}$, and

$$\lim_{n \to \infty} \|J_n f - f\|_X = 0 \qquad (f \in X), \tag{1.5}$$

$$J_n T_t f = T_t J_n f \qquad (f \in X; n \in \mathbb{N}; t \in (0, 1]).$$
(1.6)

- (a) If $f \in X$ is such that (1.1) holds, then $f \in D(B)$ and Bf = 0.
- (b) The following statements are equivalent for $f \in X$:
 - (i) $||T_t f f||_X = \mathcal{O}(\varphi(t)) \ (t \to 0+),$

(ii) $f \in \widetilde{D(B)}^{X}$, i.e., f belongs to the completion of D(B) relative to X.

For the definition of the relative completion recall [1, p. 14; 4, p. 373]. In (ii) as well as in the following D(B) is endowed with the norm

$$\|g\|_{D(B)} := \|g\|_{X} + \|Bg\|_{X} \qquad (g \in D(B)).$$
(1.7)

Note that Theorem 1 does not state that $\{T_t\}$ is saturated, since the conclusion of part (a), namely, Bf = 0, does not necessarily imply $T_t f = f$ for small t. In many applications, however, this will be the case, so that this result is a useful tool for proving saturation theorems for particular approximation processes.

The aim of this paper now is to prove two counterparts of Theorem 1 for

RIES AND STENS

the family $\{T'_t\}$ of dual operators. Our results generalize in particular those of de Leeuw [7] and Butzer-Berens [2, Corollary 2.1.5] concerning saturation of dual semigroups of operators.

2. Preliminaries

Concerning notations, if X, Y are normed linear spaces, then |X, Y| is the space of all bounded linear operators from X into Y, endowed with the operator norm $\|\cdot\|_{[X,Y]}$. Instead of |X, X| we write |X|.

If X', Y' are the dual spaces of X and Y, respectively, and $T \in [X, Y]$, then the dual operator T', defined by

$$\langle T'f', f \rangle = \langle f', Tf \rangle \qquad (f' \in Y'; f \in X),$$
 (2.1)

is an element of |Y', X'| and

$$\|T'\|_{[Y',X']} = \|T\|_{[X,Y]}.$$
(2.2)

Moreover, if Y is a Banach space and the range of T equals Y, in notation R(T) = Y, then T' has a continuous inverse, i.e., $(T')^{-1} \in [X', Y']$ (see [9, Section 4.5 and Theorem 4.7B]).

Now let B be a linear operator (not necessarily bounded) with domain D(B) dense in X into X. The operator B^* , also called the dual of B, is a mapping whose domain $D(B^*)$ consists of all $f' \in X'$ for which there exists a $g' \in X'$ such that

$$\langle g', g \rangle = \langle f', Bg \rangle \qquad (g \in D(B));$$
 (2.3)

in this case one sets $B^*f' = g'$. It is clear that $D(B^*)$ is a linear manifold in X', and that B^* is a linear operator from $D(B^*)$ into X'.

On the other hand, since B becomes a bounded operator when regarded as a mapping from D(B) (endowed with the norm (1.7)) into X, one can also consider the operator $B' \in [X', D(B)']$. It follows that B^* is the restriction of B' to those $f' \in X'$ for which B'f' has a continuous extension from D(B)to X, in other words, f' belongs to $D(B^*)$ if and only if $B'f' \in X'$. Note that the extension of B'f' from D(B) to X is unique since D(B) is dense in X (cf. [6, p. 50]).

The following lemmas will be needed below:

LEMMA 1. Under the assumptions of Theorem 1 there holds:

- (i) D(B) is dense in X:
- (ii) $T_t \in [D(B)]$ $(t \in (0, 1]);$
- (iii) $T_t Bg = BT_t g \ (g \in D(B); t \in (0, 1|).$

Proof. Assertion (i) follows immediately from (1.5) since $J_n f \in D(B)$. To prove (ii) and (iii) note that g belongs to D(B) and Bg = f if and only if s-lim_{t→0+} $(\varphi(t))^{-1}[T_t g - g] = f$ (cf. [4, p. 502]). Now, if $g \in D(B)$, then

$$\operatorname{s-lim}_{s\to 0+} \frac{T_s T_t g - T_t g}{\varphi(s)} = T_t \left[\operatorname{s-lim}_{s\to 0+} \frac{T_s g - g}{\varphi(s)} \right] = T_t Bg,$$

implying $T_t g \in D(B)$ and $BT_t g = T_t Bg$, which is (iii). Furthermore, part (ii) follows in view of

$$||T_t g||_{D(B)} = ||T_t g||_X + ||T_t Bg||_X \leq ||T_t||_{[X]} ||g||_{D(B)}.$$

LEMMA 2. Let $\{T_t; t \in (0, 1]\}$ and B be given as in Theorem 1. Then there exist M, $\delta > 0$ such that

$$\|(\varphi(t))^{-1}[T_t - I]\|_{[D(B), X]} \leq M \qquad (0 < t \leq \delta),$$
(2.4)

$$\|(\varphi(t))^{-1}[T'_t - I]\|_{[X', D(B)']} \leq M \qquad (0 < t \leq \delta),$$
(2.5)

where I denotes the identity operator on any space.

The proof of (2.4) follows by the uniform boundedness principle in view of (1.4), noting that D(B) is a Banach space under the norm (1.7); inequality (2.5) can be deduced from (2.4) by (2.2).

3. Two General Dual Saturation Theorems

The aim of this section is to prove two counterparts of Theorem 1 for the family $\{T'_t; t \in (0, 1]\}$ of dual operators, where $\{T_t\}$ is given as in Theorem 1. It follows obviously from the definition and (1.3) that $\{T'_t\}$ is a family of bounded linear operators from X' into itself, satisfying

$$\lim_{t \to 0^+} \langle T'_t f', f \rangle = \langle f', f \rangle \qquad (f' \in X'; f \in X),$$

i.e., T'_t tends in the w*-topology of X' towards the identity.

Similarly, since B is a bounded linear operator from D(B) normed by (1.7) into X, it follows that $B' \in [X', D(B)']$, and in view of (1.4) there holds the Voronovskaja-type relation

$$\lim_{t \to 0+} \langle (\varphi(t))^{-1} [T'_t f' - f'], g \rangle = \langle B' f', g \rangle \qquad (f' \in X'; g \in D(B)).$$
(3.2)

THEOREM 2. Let $\{T_t; t \in (0, 1]\}$, B and $\{J_n; n \in \mathbb{N}\}$ be given as in Theorem 1. Suppose, in addition, that there exists a complex number λ such that $R(B - \lambda I) = X$.

(a) If $f' \in X'$ is such that $\liminf_{t \to 0^+} ||(\varphi(t))^{-1} [T'_t f' - f']||_{X'} = 0$, then $f' \in D(B^*)$ and $B^* f' = 0$ on X.

- (b) The following statements are equivalent for $f' \in X'$:
 - (i) $||T'_t f' f'||_{X'} = \mathcal{O}(\varphi(t)) \ (t \to 0+),$ (ii) $f' \in D(B^*).$

Proof. Concerning part (a), there exists a sequence $\{t_j; j \in \mathbb{N}\} \subset (0, 1]$ with $\lim_{i \to \infty} t_i = 0$ such that

$$\lim_{j \to \infty} \|(\varphi(t_j))^{-1} [T'_{t_j} f' - f']\|_{X'} = 0.$$

This yields for all $g \in D(B)$

$$0 = \lim_{j \to \infty} \langle (\varphi(t_j))^{-1} | T'_{t_j} f' - f' |, g \rangle$$
$$= \lim_{j \to \infty} \langle f', (\varphi(t_j))^{-1} | T_{t_j} g - g] \rangle = \langle f', Bg \rangle.$$

giving $f' \in D(B^*)$ and $B^*f' = 0$ by (2.3).

As to part (b), setting $B_t := (\varphi(t))^{-1} [T_t - I]$, one has by (i) that the family $\{B'_t f'\} \subset X'$, regarded as a family of operators from X into the space of complex numbers, is uniformly bounded for $0 < t \le \delta$, and strongly convergent for $t \to 0+$ on a dense subset of X by (3.2). An application of the Banach-Steinhaus theorem (cf. [4, Proposition 0.7.3]) then yields the existence of a $g' \in X'$ such that

$$\lim_{t\to 0+} \langle B'_t f', f \rangle = \langle g', f \rangle \qquad (f \in X).$$

Comparing this with (3.2) reveals that

$$\langle g',g\rangle = \langle B'f',g\rangle = \langle f',Bg\rangle \qquad (g \in D(B)),$$

and so it follows that $f' \in D(B^*)$.

Conversely, since $R(B - \lambda I) = X$ implies that $B' - \lambda I$ has a continuous inverse from D(B)' into X', one obtains

$$\|B_{t}'f' - B^{*}f'\|_{X'} = \|(B' - \lambda I)^{-1}(B' - \lambda I)(B_{t}' - B^{*})f'\|_{X'}$$
$$\leq M \|(B' - \lambda I)(B_{t}' - B^{*})f'\|_{D(B)'}$$
$$= M \|(B' - \lambda I)(B_{t}' - B')f'\|_{D(B)'},$$

noting that $B'f' = B^*f'$ on D(B). Now one easily verifies by Lemma 1(iii)

that $(B' - \lambda I)$ commutes with $(B'_t - B')$, and so in view of (2.5) there follows the estimate

$$\|B_t'f' - B^*f'\|_{X'} \leq M \|B_t' - B'\|_{[X', D(B)']} \|(B' - \lambda I)f'\|_{X'} = \mathcal{O}(1) \quad (t \to 0+).$$

This gives assertion (i), and the proof is complete.

It should be mentioned that the existence of the regularization process $\{J_n\}$, which is not explicitly used in the proof of Theorem 2, is needed for the proof of Lemma 1(iii) which in turn was used to show that $(B' - \lambda I)$ commutes with $(B'_t - B')$. If T_t maps X into D(B), which is the case in many applications, then one may take $J_n = T_{1/n}$.

Now we come to the second counterpart of Theorem 1. Since T_t belongs also to [D(B)], one can in addition treat saturation of $\{T'_t\}$ in [D(B)']. In this case one has to assume that the J_n map X continuously into D(B).

LEMMA 3. Let $\{T_i\}$, B and $\{J_n\}$ be given as in Theorem 1, and assume that $J_n \in [X, D(B)]$ for each $n \in \mathbb{N}$. Then

- (i) $J_n Bg = BJ_n g \ (g \in D(B); n \in \mathbb{N});$
- (ii) $\lim_{n\to\infty} \|J_n g g\|_{D(B)} = 0 \ (g \in D(B));$
- (iii) $||J_n||_{[D(B)]} \leq M \ (n \in \mathbb{N});$
- (iv) $J'_{n}B'g' = B'J'_{n}g' \ (g' \in D(B)'; n \in \mathbb{N});$
- (v) $\lim_{n\to\infty} \langle J'_n f', g \rangle = \langle f', g \rangle \ (f' \in D(B)'; g \in D(B));$
- (vi) $||J'_n||_{[D(B)']} \leq M \ (n \in \mathbb{N}).$

Proof. Assertion (i) can be proved similarly as Lemma 1(iii) using (1.6); (ii) then follows by (1.5). Regarding (iii), one has again to apply the Banach-Steinhaus theorem, noting (ii) and the fact that $\{J_n\} \subset [D(B)]$. Statements (iv), (v) and (vi), finally, are the dual versions of (i), (ii) and (iii).

Our second result now reads

THEOREM 3. Let the assumptions of Theorem 2 be satisfied and suppose, in addition, that $\{J_n; n \in \mathbb{N}\} \subset [X, D(B)]$.

(a) If $f' \in D(B)'$ is such that $\liminf_{t\to 0^+} ||(\varphi(t))^{-1}|T'_t f' - f']||_{D(B)'} = 0$, then f' has a continuous extension from D(B) to X, belongs to $D(B^*)$ and $B^*f' = 0$ on X.

- (b) The following statements are equivalent for $f' \in D(B)'$:
 - (i) $||T'_t f' f'||_{D(B)'} = \mathcal{O}(\varphi(t)) \ (t \to 0+),$
 - (ii) f' has a continuous extension from D(B) to X, i.e., $f' \in X'$.

Proof. We prove only part (b) since (a) follows by the same argument as in the proof of Theorem 2. Now for $f' \in D(B)'$ one has $J'_n f' \in X'$, and

$$\begin{aligned} \|J'_n f'\|_{X'} &= \|(B' - \lambda I)^{-1} (B' - \lambda I) J'_n f'\|_{X'} \\ &\leq M \{ \|B' J'_n f'\|_{D(B)'} + |\lambda| \|J'_n f'\|_{D(B)'} \}. \end{aligned}$$

Using (1.6) and (i) one can estimate the first term by

$$\|B'J'_{n}f'\|_{D(B)'} \leq \liminf_{t \to 0+} \|J'_{n}|(\varphi(t))^{-1}[T'_{t}f'-f']]\|_{D(B)'}$$
$$\leq \sup_{t \in (0,\delta)} \|(\varphi(t))^{-1}[T'_{t}f'-f']\|_{D(B)'} \|J'_{n}\|_{[D(B)']}$$
$$\leq M \|J'_{n}\|_{[D(B)']} \qquad (n \in \mathbb{N}),$$

so that together

$$\|J'_n f'\|_{X'} \leqslant \{M + |\lambda| \|f'\|_{D(B)'}\} \|J'_n\|_{|D(B)'|} \leqslant M_1 \qquad (n \in \mathbb{N}).$$

the latter inequality being valid by Lemma 3(vi). So the sequence $\{J'_n f'\}$ is uniformly bounded with respect to $n \in \mathbb{N}$, as well as convergent on a dense subset of X by Lemma 3(v). So one can conclude that there exists some $f'_0 \in X'$ satisfying

$$\lim_{n\to\infty} \langle J'_n f', f \rangle = \langle f'_0, f \rangle \qquad (f \in X).$$

Comparing this result with Lemma 3(v) shows that f'_0 is the desired extension of f'. The converse direction, finally, is given by inequality (2.5).

The difference between Theorems 2 and 3 is that they treat the saturation problem in different spaces. In Theorem 2 the operators T'_t are regarded as elements of |X'|, whereas in Theorem 3 they are considered as elements of |D(B)'|. Although the proofs of both theorems are quite similar, it does not seem that one can be deduced from the other.

4. APPLICATIONS

4.1. Semigroups of Operators

If $\{S(t); t \ge 0\}$ is a (C_0) -semigroup of operators defined on a Banach space X (for definition see [2, Section 1.1]), and A is the infinitesimal generator, then D(A) is dense in X, and by definition there holds

$$\lim_{t \to 0^+} ||t^{-1}|S(t)g - g| - Ag||_{X} = 0 \qquad (g \in D(A)),$$

i.e., $\{S(t); t \ge 0\}$ satisfies a Voronovskaja-type relation with $\varphi(t) = t$ and B = A. Moreover,

$$J_n f := n \int_0^{1/n} S(t) f dt \qquad (n \in \mathbb{N})$$

defines a regularization process, as needed in Theorems 1 or 2, and one has that $R(A - \lambda I) = X$ for all complex λ with real part large enough (cf. [2, pp. 31, 32]). Finally, if $f' \in D(A^*)$, then (cf. [2, p. 48])

$$\langle S(t)'f'-f',f\rangle = \int_0^t \langle S(u)'A^*f',f\rangle du \qquad (f\in X;t>0).$$

This shows that $A^*f' = 0$ on X implies S(t)'f' = f' for all t > 0.

As an application of Theorem 2 one now obtains

THEOREM 4. Let $\{S(t); t \ge 0\}$ be a (C_0) -semigroup of operators on a Banach space X with infinitesimal generator A:

(a) If $f' \in X'$ is such that $\liminf_{t\to 0^+} ||t^{-1}[S(t)'f' - f']||_{X'} = 0$, then S(t)'f' = f' for all t > 0.

(b) The following statements are equivalent for $f' \in X'$:

(i)
$$||S(t)'f' - f'||_{X'} = \mathcal{O}(t) \ (t \to 0+),$$

(ii) $f' \in D(A^*).$

Theorem 4 states that $\{S(t)'\}$ is saturated in X' with order $\mathcal{O}(t)$, the saturation class being given by $D(A^*)$. Note that this result was already established by de Leeuw [7] using the Banach-Alaoglu theorem on w^* -compactness of bounded w^* -closed sets; see also [2, Theorem 2.1.4].

In order to apply Theorem 2, we restrict ourselves to holomorphic semigroups, which means that $S(t) f \in D(A)$ for all $f \in X$ and t > 0. In this case one can use the results in [8] to obtain in addition assertions on non-optimal approximation.

THEOREM 5. Let $\{S(t); t \ge 0\}$ be a holomorphic (C_0) -semigroup of operators on a Banach space X.

(a) The following assertions are equivalent for $f' \in D(A)'$ and $0 < \sigma < 1$:

- (i) $||S(t)'f' f'||_{D(A)'} = \mathcal{O}(t^{\sigma}) \ (t \to 0+),$
- (ii) $K(t^{\sigma}, f'; D(A)', X') = \mathcal{O}(t^{\sigma}) \ (t \to 0+).$

(b) $\{S(t)'\}$ is saturated in D(A)' with order $\mathcal{O}(t)$, the saturation class is given by X'.

For the proof of part (a) and the definition of the K-functional see [8]. The Jackson-type inequality needed there follows from (2.4) and the Bernstein-type inequality from [2, Proposition 1.1.11]. Note that Theorem 5(b) remains valid if the assumption $\{S(t)\}$ to be holomorphic is dropped.

4.2. Convolution Integrals

As a further application of Theorem 3 we consider approximation processes generated by convolution integrals. Let $C_{2\pi}$ denote the space of all continuous, 2π -periodic, complex-valued functions defined on the real axis \mathbb{P} , endowed with the supremum norm $||f||_{\mathbb{C}}$. A sequence of functions $\{\chi_k : k \in \mathbb{N}\}$ in $C_{2\pi}$ is called an approximate identity, if $\int_{-\pi}^{\pi} \chi_k(u) du = 2\pi$ for all $k \in \mathbb{N}$ and $\lim_{k \to \infty} \int_{|u| \ge \delta} |\chi_k(u)| du = 0$ for each $\delta > 0$. The convolution integrals of $f \in C_{2\pi}$ with χ_k are defined as

$$(V_k f)(x) \equiv (f * \chi_k)(x) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-u) \chi_k(u) du \qquad (k \in \mathbb{N} : x \in \mathbb{R}).$$

The V_k are bounded linear operators from $C_{2\pi}$ into itself satisfying

$$V_k V_j f = V_j V_k f, \qquad \lim_{k \to \infty} \| V_k f - f \|_{\mathcal{C}} = 0 \qquad (f \in C_{2\pi}; j, k \in \mathbb{N}).$$

In order to apply Theorem 2 we assume that the V_k satisfy a Voronovskaja-type relation with respect to the 2nd derivative, namely,

$$\lim_{k \to \infty} \|k^{\alpha} [V_k g - g] - c g^{(2)}\|_{\mathcal{C}} = 0 \qquad (g \in C_{2\pi}^2)$$
(4.1)

for some $\alpha > 0$, $c \in \mathbb{R} \setminus \{0\}$, where $C_{2\pi}^2$ is the set of all $g \in C_{2\pi}$ for which the 2nd derivative $g^{(2)}$ again belongs to $C_{2\pi}$. So we have $B = c(d/dx)^2$, $D(B) = C_{2\pi}^2$ and $\varphi(1/k) = k^{-\alpha}$.

As regularization operators J_n one can take any convolution integral with underlying approximate identity $\{\kappa_n\} \subset C_{2\pi}^2$. Finally, one has that for each complex λ with $\lambda/c \neq j^2$ for j = 0, 1, 2,... there holds $R(c(d/dx)^2 - \lambda I) = C_{2\pi}$.

In order to compute the dual space of $C_{2\pi}^2$ we regard $C_{2\pi}'$ and $(C_{2\pi}^2)'$ as subspaces of $\mathscr{D}'_{2\pi}$, the space of all 2π -periodic distributions (cf. [10, Chapter 11]). On $\mathscr{D}'_{2\pi}$ we consider the operator

$$(I^{2}f')(x) := \sum_{\substack{j=-\infty\\ j\neq 0}}^{\infty} (ij)^{-2} f'(j) e^{ijx} \qquad (f' \in \mathscr{Q}'_{2\pi}),$$

where convergence is to be understood in the topology of $\mathscr{L}'_{2\pi}$, and the distributional Fourier coefficients are given by $f'(j) := (2\pi)^{-1} \langle f'(x), e^{-ijx} \rangle$.

Setting now

$$(C'_{2\pi})^{-2} := \{ f' \in \mathscr{D}'_{2\pi} ; I^2 f' \in C'_{2\pi} \},\$$

$$|f'|_{(C'_{2\pi})^{-2}} := |f'^{(0)}| + ||I^2 f'|_{C'_{2\pi}},\$$

then $(C_{2\pi}^2)'$ and $(C_{2\pi}')^{-2}$ are equal with equivalent norms (cf. [8]).

THEOREM 6. Let $\{V_k; k \in \mathbb{N}\}$ be a sequence of convolution integrals satisfying (4.1) for some $\alpha > 0$, $c \in \mathbb{R} \setminus \{0\}$.

(a) If $f' \in (C'_{2\pi})^{-2}$ is such that $\liminf_{k \to \infty} ||k^{\alpha} [V'_k f' - f']||_{(C'_{2\pi})^{-2}} = 0$, then $V'_k f' = f'$ for all $k \in \mathbb{N}$.

(b) The following statements are equivalent for $f' \in (C'_{2\pi})^{-2}$:

(i) $\|V'_k f' - f'\|_{(C'_{2n})^{-2}} = \mathcal{O}(k^{-\alpha}) \ (k \to \infty),$ (ii) $f' \in C'_{2n}.$

There are various convolution integrals satisfying the Voronovskaja-type relation (4.1), e.g., the integrals of Jackson with $\alpha = 2$, c = 3/2, of de La Vallée Poussin with $\alpha = 1$, c = 1 and those of Rogosinski with $\alpha = 2$, $c = \pi^2/8$ (cf. [3]).

Similarly as in Theorem 5 one can use the results in [8] to treat approximation orders $\mathcal{O}(k^{-\sigma})$ for $0 < \sigma < \alpha$. Results corresponding to those of Theorem 6 are valid in $L_{2\pi}^p$ -spaces.

Of course it would also be possible to apply Theorem 2 to convolution integrals. In this case one has to compute the spaces $D(B^*)$. For some particular integrals this is carried out in [7].

References

- 1. H. BERENS, "Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen," Lecture Notes in Mathematics No. 64, Springer-Verlag, Berlin, 1968.
- 2. P. L. BUTZER AND H. BERENS, "Semi-Groups of Operators," Springer-Verlag, Berlin, 1967.
- P. L. BUTZER AND E. GÖRLICH, Saturationsklassen und asymptotische Eigenschaften Trigonometrischer singulärer Integrale, *in* "Festschrift zur Gedächtnisfeier Karl Weierstraß 1815–1965 (Wiss. Abh. Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen 33" (H. Behnke and K. Kopfermann, Eds.), pp. 339–392, Westdeutscher Verlag, Opladen, 1966.
- 4. P. L. BUTZER AND R. J. NESSEL, "Fourier Analysis and Approximation," Vol. 1, Birkhäuser Verlag/Academic Press, Basel, New York, 1971.
- 5. R. A. DEVORE, "The Approximation of Continuous Functions by Positive Linear Operators," Lecture Notes in Mathematics No. 293, Springer-Verlag, Berlin, 1972.
- 6. S. GOLDBERG, "Unbounded Linear Operators," McGraw-Hill, New York, 1966.
- 7. K. DE LEEUW, On the adjoint semigroup and some problems in the theory of approximation, Math. Z. 73 (1960), 219-234.

RIES AND STENS

- 8. S. RIES AND R. L. STENS, A unified approach to fundamental theorems of approximation by sequences of linear operators and their dual versions, *Acta Math. (Szeged)* **47** (1984), in press.
- 9. A. E. TAYLOR, "Introduction to Functional Analysis," Wiley, New York, 1958.
- 10. A. H. ZEMANIAN, "Distribution Theory and Transform Analysis," McGraw-Hill, New York, 1965.